
Andrej Karpathy

YC AI Startup school

June 16

Software in the era of AI

Software is changing.
(again)

"Map of GitHub"

Software 1.0 = code

Software 2.0 = weights

"Map of GitHub" (Software 1.0)
computer code

HuggingFace Model Atlas
(Software 2.0)

neural network weights

Software 1.0
computer code

programs

computer

became programmable in ~1940s

Software 2.0
weights

programs

neural net

fixed function neural net
e.g. AlexNet: for image recognition (~2012)

Software 3.0
prompts

programs

LLM

LLM = programmable neural net!
~2019

Example: Sentiment Classification

Software 1.0 Software 2.0 Software 3.0

10,000 positive examples
10,000 negative examples

train binary classifier

encoding (e.g. bag of words)

parameters

"Map of GitHub" (Software 1.0)
computer code

(Software 3.0)
LLM prompts, in English

HuggingFace Model Atlas
(Software 2.0)

neural network weights

A huge amount of Software will be (re-)written.

Part 1

How to think about LLMs

"AI is the new electricity"
-Andrew Ng

LLMs have properties of utilities...

- CAPEX to train an LLM (~= to build the grid)

- OPEX to serve intelligence over increasingly
homogeneous API (prompt, image, tools, ...)

- Metered access ($/1M tokens)

- Demand for low latency, high uptime, consistent
quality (~= demanding consistent voltage from grid)

- OpenRouter ~= Transfer Switch (grid, solar, battery,
generator...)

- Intelligence "brownouts" e.g. when OpenAI goes
down.

OpenRouter

LLMs have properties of fabs...

- Huge CAPEX

- Deep tech tree R&D, secrets

- 4nm process node ~= 10^20 FLOPS cluster

- Anyone training on NVIDIA GPUs ~= fabless

- Google training on TPUs ~= owns fab (e.g. Intel)

e.g. xAI Colossus cluster (100K H100 GPUs)

LLMs have properties of Operating Systems...

- LLMs are increasingly complex software ecosystems, not
simple commodities like electricity.

- LLMs are Software. Trivial to copy & paste, manipulate,
change, distribute, open source, steal..., not physical
infrastructure.

- Some amount of switching friction due to different features,
performance, style, capabilities etc. per domain.

- System/user (prompt) space ~= kernel/user (memory) space

- ...

LLM OS

You can run an app like VS Code on:

- Windows 10, 11

- Mac 10.15

- Linux

- ...

Just like you can run an LLM app like Cursor on:

- GPT o3

- Claude 4-sonet

- Gemini 2.5-pro

- DeepSeek

- ...

1950s - 1970s time-sharing era
We are in the Mainframe & Time-sharing era of computing.
Centralized, expensive computers =>

- OS runs in the cloud

- I/O is streamed back and forth over the network

- compute is batched over users

Early hints of Personal Computing v2

(text) chat ~= terminal

direct/native access to the OS.

GUI hasn't been invented yet. (~1970)

ChatGPT

Power to the people: How LLMs flip the script on technology diffusion

Examples: electricity, cryptography, computing, flight, internet, GPS, ...

All technology and usually

LLMs

https://karpathy.bearblog.dev/power-to-the-people/

Military ballistics "Hi ChatGTP how to boil egg?"

https://karpathy.bearblog.dev/power-to-the-people/

LLM labs:

- Fab LLMs

- LLMs ~= Operating Systems (circa 1960s)

- Available via time-sharing, distributed like utility

NEW: Billions of people have sudden access to them!

It is our time to program them.

Part 1 Summary

Part 2

LLM Psychology

LLMs are "people spirits": stochastic simulations of people.

=> They have a kind of emergent "psychology".

Simulator = autoregressive Transformer

Encyclopedic knowledge/memory, ...

Hallucinations

Jagged intelligence

Famous examples: 9.11 > 9.9, two 'r' in 'strawberry', ...

Anterograde amnesia

No continual learning,
no equivalent of
"sleep" to consolidate
knowledge, insight or
expertise into weights.

Context windows ~=
working memory.

In popular culture...

Gullibility

=> Prompt injection risks, e.g. of private data

LLM Psychology
Kind of a lossy simulation of a
savant with cognitive issues.

Part 2 Summary

Part 3

Opportunities

Partial autonomy apps ⚙
"Copilot" / "Cursor for X"

Example: you could go to an LLM to chat about code...

Example: Anatomy of Cursor
LLM integrationTraditional interface

1. Package state into a context
window before calling LLM.

2. Orchestrate and call multiple
models (e.g. embedding models,
chat models, diff apply models, ...)

3. Application-specific GUI

4. Autonomy slider: Tab →
Cmd+K → Cmd+L → Cmd+I
(agent mode)

autonomy slider

1. Package information into a
context window

2. Orchestrate multiple LLM
models

3. Application-specific GUI for
Input/Output UIUX

4. autonomy slider

Example: Anatomy of Perplexity

search research deep research

(+suggested followup questions)

Adobe photoshop Unreal engine

- Can an LLM "see" all the things the human can?

- Can an LLM "act" in all the ways a human can?

- How can a human supervise and stay in the loop?

- ...

What does all software look like in the partial autonomy world?

Consider the full workflow of partial autonomy UIUX

Generation

Verification
2. Keep AI "on a tight leash" to
increase the probability of
successful verification

1. Make this EASY, FAST to win.

Example: keeping agents on the leash

"AI-assisted coding" workflows (very rapidly evolving...)

- describe the single, next concrete, incremental change

- don't ask for code, ask for approaches

- pick an approach, draft code

- review / learn: pull up API docs, ask for explanations, ...

- wind back, try a different approach

- test

- git commit

- ask for suggestions on what could be implemented next

- repeat

Example: keeping agents on the leash

Example: keeping agents on the leash - AI + Education / LLM101n

1. App for course creation (for teacher) 2. App for course serving (for student)

Example: Tesla Autopilot

- keep the lane

- keep distance from
the car ahead

- take forks on highway

- stop for traffic lights
and signs

- take turns at
intersections

- ...

autonomy slider

2015 - 2025 was the decade of "driving agents"

2013: my first demo drive in a Waymo around Palo Alto (it was perfect).

2015 - 2025 was the decade of "driving agents"

Mind the "demo-to-product gap"!

It takes a huge amount of hard
work across the stack to turn an
autonomy demo into an autonomy
product, especially when high
reliability matters.

demo is a `works.any()`

product is a `works.all()`

"2025 is the year of agents."

?

"2025-2035 is the decade of agents."
-Andrej

Augmentation Agent

Building Autonomous Software

❌ Flashy demos of autonomous agents

❌ AGI 2027

❌ Iron Man robots

✅ Partial autonomy products

✅ Autonomy slider

✅ Fast Generation - Verification loop

✅ Iron Man suits

✅ Custom GUI and UIUX

Make software highly accessible 👶

(Have you heard of vibe coding by any chance?)

Vibe Coding iOS app

Vibe coding MenuGen
https://www.menugen.app/

https://www.menugen.app/

😐 LLM API keys

😐 Flux (image generation) API keys

✅ Running locally (ez)

😕 Vercel deployments

😕 Domain names

😖 Authentication

😕 Payments

The code was the easiest part! :O

https://karpathy.bearblog.dev/vibe-coding-menugen/

Most of the work was in the
browser clicking things.

https://karpathy.bearblog.dev/vibe-coding-menugen/

Example: adding Google login

Build for agents 🤖

There is new category of consumer/manipulator of digital information:

1. Humans (GUIs)

2. Computers (APIs)

3. NEW: Agents <- computers... but human-like

robots.txt →

Docs for people

Docs for people LLMs

Actions for people LLMs
"click" -> cURL MCP

GitingestContext builders, e.g.:

Devin DeepWikiContext builders, e.g.:

Partial autonomy LLM apps:

- Package context

- Orchestrate LLM calls

- Custom GUI

- Autonomy slider

Build for
agents 🤖

speed up the full generation-verification flow

Augmentation Agent

Thank you!

